A random walk model for infection on graphs
نویسندگان
چکیده
We address the question of understanding the effect of the underlying network topology on the spread of a virus and the dissemination of information when users are mobile performing independent random walks on a graph. To this end, we propose a simple model of infection that enables to study the coincidence time of two random walkers on an arbitrary graph. By studying the coincidence time of a susceptible and an infected individual both moving in the graph we obtain estimates of the infection probability. The main result of this paper is to pinpoint the impact of the network topology on the infection probability. More precisely, we prove that for homogeneous graphs including regular graphs and the classical Erdős–Rényi model, the coincidence time is inversely proportional to the number of nodes in the graph. We then study the model on power-law graphs, that exhibit heterogeneous connectivity patterns, and show the existence of a phase transition for the coincidence time depending on the parameter of the power-law of the degree distribution. We finally undertake a preliminary analysis for the case with k random walkers and provide upper bounds on the convergence time for both the complete graph and regular graphs.
منابع مشابه
Faster Clustering via Non-Backtracking Random Walks
This paper presents VEC-NBT, a variation on the unsupervised graph clustering technique VEC, which improves upon the performance of the original algorithm significantly for sparse graphs. VEC employs a novel application of the state-ofthe-art word2vec model to embed a graph in Euclidean space via random walks on the nodes of the graph. In VEC-NBT, we modify the original algorithm to use a non-b...
متن کاملEfficient collection of sensor data via a new accelerated random walk
Motivated by the problem of efficiently collecting data from wireless sensor networks via a mobile sink, we present an accelerated random walk on Random Geometric Graphs. Random walks in wireless sensor networks can serve as fully local, lightweight strategies for sink motion that significantly reduce energy dissipation but introduce higher latency in the data collection process. In most cases ...
متن کاملA Fuzzy Random Walk Technique to Forecasting Volatility of Iran Stock Exchange Index
Study of volatility has been considered by the academics and decision makers dur-ing two last decades. First since the volatility has been a risk criterion it has been used by many decision makers and activists in capital market. Over the years it has been of more importance because of the effect of volatility on economy and capital markets stability for stocks, bonds, and foreign exchange mark...
متن کاملCoalescent Random Walks on Graphs
Inspired by coalescent theory in biology, we introduce a stochastic model called ”multi-person simple random walks” or “coalescent random walks” on a graph G. There are any finite number of persons distributed randomly at the vertices of G. In each step of this discrete time Markov chain, we randomly pick up a person and move it to a random adjacent vertex. To study this model, we introduce the...
متن کاملHow to Explore a Fast-Changing World (Cover Time of a Simple Random Walk on Evolving Graphs)
Motivated by real world networks and use of algorithms based on random walks on these networks we study the simple random walks on dynamic undirected graphs with fixed underlying vertex set, i.e., graphs which are modified by inserting or deleting edges at every step of the walk. We are interested in the expected time needed to visit all the vertices of such a dynamic graph, the cover time, und...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Event Dynamic Systems
دوره 21 شماره
صفحات -
تاریخ انتشار 2009